

Cyber Security in the Electric Sector

Annabelle Lee

Principal Technical Executive Electric Power Research Institute (EPRI)

alee@epri.com 202.293.6345

EPRI's Mission

Advancing **safe**, **reliable**, **affordable**, and **environmentally responsible** electricity for society through global collaboration, thought leadership and science & technology innovation

Three Key Aspects of EPRI

Independent

Objective, scientifically based results address reliability, efficiency, affordability, health, safety, and the environment

Nonprofit

Chartered to serve the public benefit

Collaborative

Bring together scientists, engineers, academic researchers, and industry experts

3

Our Members...

- 450+ participants in more than
 30 countries
- EPRI members generate
 approximately 90% of the
 electricity in the United States
- International funding nearly
 25% of EPRI's research,
 development, and demonstrations

EPRI Cyber Security Research

- Technology Transfer
- Industry Coordination
- Transition to Practice

Before we continue let's get over our fears and myths with some much needed levity ...

Sum of All Myths

Wishful Immunity

Myth: There is no problems here just happy and trusted people working on reliable and isolated systems

Fact: Sophisticated attackers use trusted people and privileged access without the target's knowledge

They usually succeed when security is exclusively perimeter and "trust" based

Sum of All Myths

Mordac Syndrome

Myth: Security reduces reliability and degrades capabilities and prices us out of existence Fact: Correctly engineered security increases reliability and reduces costs and risks due to poor design and systemic failures

The Sum of All Fears

Point and Click Attacks

Fear: All generators and transformers can be cyber-attacked with script kiddie ease!

Fact: There are more interlocked safeties, backups, and other secondary systems and processes that make these cyber-attacks more difficult in practice

Need to concentrate on enhancing <u>existing</u> safety and reliability practices to address cyber security risks

Background

Threats to the Grid

- Deliberate attacks
 - Disgruntled employees
 - Industrial espionage
 - Unfriendly states
 - Organized crime
 - Terrorists

- Equipment failures
- User/Administrator errors
- Natural phenomena
 - Weather hurricanes, earthquakes
 - Solar activity

Trends Impacting Security

- Increasing reliance on automation
- Open protocols
 - Open industry standard protocols are replacing vendor-specific proprietary communication protocols

- Common operating systems
 - Standardized computer platforms increasingly used to support control system applications
- Interconnected to other systems
 - Connections with enterprise networks to obtain productivity improvements and information sharing

IT and Control Systems – Differences...

- For IT systems, confidentiality and integrity are the major objectives
- For control systems, availability and integrity are the major objectives
- Limited bandwidth and processing capability
- Potential loss of life impact if there is a major compromise

- Time critical content
 - For IT, delays are usually accepted
 - For control systems, critical due to safety
- IT system life cycle varies from 6 months to 2 years
- Control systems life cycle varies from 15 to 40 years

Getting Started – Practical Risk Management

Acronyms....

- CIP: Critical Infrastructure Protection
- DOE: Department of Energy
- ES-C2M2: Electricity Subsector Cybersecurity Capability Maturity Model
- IT: Information Technology
- NEI: Nuclear Energy Institute
- NERC: North American Electric Reliability Cooperation
- NESCOR: National Electric Sector Cybersecurity Organization Resource
- NIS: Network and Information Security
- NIST: National Institute of Standards and Technology
- NISTIR: Interagency Report
- NRC: Nuclear Regulatory Commission
- NRECA: National Rural Electric Cooperative Association
- OT: Operations Technology
- SP: Special Publication

Cybersecurity Capability Maturity Model (C2M2)

Overview

Expansion Project and Comparative Analysis

National Electric Sector Cybersecurity Organization Resource (NESCOR)

Build an industry collaboration

- Public/private partnership funded by DOE
- Utilities, vendors, academia, consultants, regulators

Address critical industry needs

Failure scenarios and impact analyses

Collaboration across all participants

Describing Failure Scenarios

Example of a Failure Scenario

Malicious Code Injected into Substation Equipment via Physical Access

Description What is the incident?

Relevant Vulnerabilities

How does the incident occur?

Impact on Power System

How does it affect survivability/reliability/resiliency?

Potential Mitigations

How do we reduce the risk?

url: Smartgrid.epri.com/nescor.aspx

Impact Criteria - Examples

Criterion	How to score
System scale	0: single utility customer, 1: neighborhood, 3: town or city, 9: potentially full utility service area and beyond
Public safety concern	0: none, 1: 10-20 injuries possible, 3: 100 injured possible, 9: one death possible
Financial impact of compromise on utility	0: Petty cash or less, 1: up to 2% of utility revenue, 3: up to 5%, 9: Greater than 5%

Likelihood and Opportunity - Examples

Criterion	How to score
Skill required	0: Deep domain/insider knowledge and ability to build custom attack tools, 1: Domain knowledge and cyber attack techniques, 3: Special insider knowledge needed, 9: Basic domain understanding and computer skills
Common vulnerability among others	0: Isolated occurrence 1: More than one utility, 3: Half or more of power infrastructure, 9: Nearly all utilities
Accessibility (logical, assume have physical access)	0: High expertise to gain access, 1: Not readily accessible, 3: Publicly accessible but not common knowledge, 9: Common knowledge or none needed

Failure Scenarios Risk Ranking Graph

Common Sub Trees

- Threat Agent Gains Capability to Reconfigure <firewall>
- Threat Agent Blocks Wireless Communication Channel Connecting <x and y>
- Authorized Employee Brings Malware into <system or network>
- Threat Agent Obtains Credentials for <system or function>
- Threat Agent Uses Social Engineering to <desired outcome>
- Threat Agent Exploits Firewall Gap in <specific firewall>
- Threat Agent Exfiltrates <data>
- Threat Agent Gains Access to <network>

Common Tree: Threat Agent Gains Access to <network>

Description

A threat agent becomes capable of sending traffic within a network and attempting to communicate with its resident hosts.

- Note: This draft tree currently expresses the high level concept of "bridging" sequentially between adjacent networks. Information should be added in future drafts related to:
 - Mitigations for detecting and preventing network reconnaissance
 - Specific differences in gaining access to networks that use various protocols and technologies

Assumptions

None currently identified

Common Tree: Threat Agent Gains Access to <network>

Common Tree: Threat Agent Gains Access to <network>

Potential Mitigations

- 1, 2 Enforce least privilege to limit individuals with privilege to the network and connected networks
- 2 Isolate network
- 3 Enforce restrictive firewall rules for access to network
- 3 Design for security by limiting connection points to networks that are widely accessible and by limiting number of hosts on same network
- 3 Require authentication to the network
- 4 Enforce least privilege for individuals with access to hosts on the network
- 4 Detect unusual patterns of usage on hosts and network

What's Next?

Security Metrics

- Create meaningful and engineering-based security metrics for the electric sector. These metrics must:
 - Be based on quantitative, repeatable data sets
 - Be independent of compliance to mandatory standards
 - Allow for tailoring across the utility, including various business units, functions, and ownership structures
 - Consider differences between IT and OT architectures
 - Communicate the state of cyber security to different stakeholders

Metrics Across the Organization

- Corporate risk and business alignment
- Heat map, Dow Jones Industrial equivalent

- Programmatic health and progress
- Scorecards and audits

Tactical

- Real-time, dayto-day, measurements
- Logs, rules, signatures, etc.

Operational

Getting Started....

Metrics Cycle

Create/Update Metrics

Collect Data Store Data Analyze and Compile Data

Report Metrics Use Metrics

Continuous Improvement

Security Architecture Overview

- Issue
 - As intelligent devices are deployed on the grid, the number of interfaces and associated attack surfaces and attack vectors will increase
- Project approach
 - Identify and assess the attack surface and attack vectors
 - Identify mitigation strategies

- Must be actionable
 - Manage cyber security risk vs avoiding risk
- Should provide useful information to senior management

SANS ICS Kill Chain

ATTACK DEVELOPMENT & TUNING

Develop

VALIDATION

Test

ICS ATTACK

Deliver

Install/Modify

Execute ICS Attack

Moving Forward...

- Cyber security supports both the reliability and privacy of the Smart Grid
- Address interconnected systems both IT and control systems
 - Cyber security needs to be addressed in <u>all</u> systems, not just critical assets
 - Augment existing protection controls, as applicable

- Continuously monitor and assess the security status
- Acknowledge will be some security breaches
 - Focus on response and recovery
 - Fail secure
 - Address both safety and security

alee@epri.com 202.293.6345

Discussion